1,455 research outputs found

    The bias of the submillimetre galaxy population: SMGs are poor tracers of the most massive structures in the z ~ 2 Universe

    Get PDF
    It is often claimed that overdensities of (or even individual bright) submillimetre-selected galaxies (SMGs) trace the assembly of the most-massive dark matter structures in the Universe. We test this claim by performing a counts-in-cells analysis of mock SMG catalogues derived from the Bolshoi cosmological simulation to investigate how well SMG associations trace the underlying dark matter structure. We find that SMGs exhibit a relatively complex bias: some regions of high SMG overdensity are underdense in terms of dark matter mass, and some regions of high dark matter overdensity contain no SMGs. Because of their rarity, Poisson noise causes scatter in the SMG overdensity at fixed dark matter overdensity. Consequently, rich associations of less-luminous, more-abundant galaxies (i.e. Lyman-break galaxy analogues) trace the highest dark matter overdensities much better than SMGs. Even on average, SMG associations are relatively poor tracers of the most significant dark matter overdensities because of 'downsizing': at z < ~2.5, the most-massive galaxies that reside in the highest dark matter overdensities have already had their star formation quenched and are thus no longer SMGs. At a given redshift, of the 10 per cent most-massive overdensities, only ~25 per cent contain at least one SMG, and less than a few per cent contain more than one SMG.Comment: 6 pages, 3 figures, 1 table; accepted for publication in MNRAS; minor revisions from previous version, conclusions unchange

    Panchromatic SED modelling of spatially-resolved galaxies

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2018 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226 950 MAGPHYS SED fits to regions between 0.2 and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the 'ground truth' is unknown.Peer reviewe

    Should we believe the results of ultraviolet–millimetre galaxy spectral energy distribution modelling?

    Get PDF
    Galaxy spectral energy distribution (SED) modelling is a powerful tool, but constraining how well it is able to infer the true values for galaxy properties (e.g. the star formation rate) is difficult because independent determinations are often not available. However, galaxy simulations can provide a means of testing SED modelling techniques. Here, we present a numerical experiment in which we apply the SED modelling code MAGPHYS to ultraviolet–millimetre synthetic photometry generated from hydrodynamical simulations of an isolated disc galaxy and a major galaxy merger by performing three-dimensional dust radiative transfer. We compare the properties inferred from the SED modelling with the true values and find that MAGPHYS recovers most physical parameters of the simulated galaxies well. In particular, it recovers consistent parameters irrespective of the viewing angle, with smoothly varying results for neighbouring time steps of the simulation, even though each viewing angle and time step is modelled independently. The notable exception to this rule occurs when we use a Small Magellanic Cloud-type intrinsic dust extinction curve in the radiative transfer calculations. In this case, the two-component dust model used by MAGPHYS is unable to effectively correct for the attenuation of the simulated galaxies, which leads to potentially significant errors (although we obtain only marginally acceptable fits in this case). Overall, our results give confidence in the ability of SED modelling to infer physical properties of galaxies, albeit with some caveats

    Kinematic classifications of local interacting galaxies: implications for the merger/disk classifications at high-z

    Get PDF
    The classification of galaxy mergers and isolated disks is key for understanding the relative importance of galaxy interactions and secular evolution during the assembly of galaxies. The kinematic properties of galaxies as traced by emission lines have been used to suggest the existence of a significant population of high-z star-forming galaxies consistent with isolated rotating disks. However, recent studies have cautioned that post-coalescence mergers may also display disk-like kinematics. To further investigate the robustness of merger/disk classifications based on kinematic properties, we carry out a systematic classification of 24 local (U)LIRGs spanning a range of galaxy morphologies: from isolated spiral galaxies, ongoing interacting systems, to fully merged remnants. We artificially redshift the WiFeS observations of these local (U)LIRGs to z=1.5 to make a realistic comparison with observations at high-z, and also to ensure that all galaxies have the same spatial sampling of ~900 pc. Using both kinemetry-based and visual classifications, we find that the reliability of kinematic classification shows a strong trend with the interaction stage of galaxies. Mergers with two nuclei and tidal tails have the most distinct kinematic properties compared to isolated disks, whereas a significant population of the interacting disks and merger remnants are indistinguishable from isolated disks. The high fraction of late-stage mergers showing disk-like kinematics reflects the complexity of the dynamics during galaxy interactions. However, the exact fractions of misidentified disks and mergers depend on the definition of kinematic asymmetries and the classification threshold when using kinemetry-based classifications. Our results suggest that additional indicators such as morphologies traced by stars or molecular gas are required to further constrain the merger/disk classifications at high-z.Comment: 16 pages, 5 figures, ApJ accepte

    Deriving star formation histories from photometry using energy balance spectral energy distribution modelling

    Get PDF
    Panchromatic spectral energy distribution (SED) fitting is a critical tool for determining the physical properties of distant galaxies, such as their stellar mass and star formation rate. One widely used method is the publicly available MAGPHYS code. We build on our previous analysis (Hayward & Smith 2015) by presenting some modifications which enable MAGPHYS to automatically estimate galaxy star formation histories (SFHs), including uncertainties, based on ultra-violet to far-infrared photometry. We use state-of-the art synthetic photometry derived by performing three-dimensional dust radiative transfer on hydrodynamic simulations of isolated disc and merging galaxies to test how well the modified MAGPHYS is able to recover SFHs under idealised conditions, where the true SFH is known. We find that while the SFH of the model with the best fit to the synthetic photometry is a poor representation of the true SFH (showing large variations with the line-of-sight to the galaxy and spurious bursts of star formation), median-likelihood SFHs generated by marginalising over the default MAGPHYS libraries produce robust estimates of the smoothly-varying isolated disk simulation SFHs. This preference for the median-likelihood SFH is quantitatively underlined by our estimates of χSFH2\chi^2_{{\rm SFH}} (analogous to the χ2\chi^2 goodness-of-fit estimator) and ΔM/M\Delta M/M (the integrated absolute mass discrepancy between the model and true SFH) that strongly prefer the median-likelihood SFHs over those that best fit the UV-to-far-IR photometry. In contrast, we are unable to derive a good estimate of the SFH for the merger simulations (either best-fit or median-likelihood) despite being able to obtain a reasonable fit to the simulated photometry, likely because the analytic SFHs with bursts superposed in the standard MAGPHYS library are insufficiently general/realistic.Peer reviewe

    Impact of Cosmic Rays on Thermal Instability in the Circumgalactic Medium

    Get PDF
    Large reservoirs of cold (~10⁴ K) gas exist out to and beyond the virial radius in the circumgalactic medium (CGM) of all types of galaxies. Photoionization modeling suggests that cold CGM gas has significantly lower densities than expected by theoretical predictions based on thermal pressure equilibrium with hot CGM gas. In this work, we investigate the impact of cosmic-ray physics on the formation of cold gas via thermal instability. We use idealized three-dimensional magnetohydrodynamic simulations to follow the evolution of thermally unstable gas in a gravitationally stratified medium. We find that cosmic-ray pressure lowers the density and increases the size of cold gas clouds formed through thermal instability. We develop a simple model for how the cold cloud sizes and the relative densities of cold and hot gas depend on cosmic-ray pressure. Cosmic-ray pressure can help counteract gravity to keep cold gas in the CGM for longer, thereby increasing the predicted cold mass fraction and decreasing the predicted cold gas inflow rates. Efficient cosmic-ray transport, by streaming or diffusion, redistributes cosmic-ray pressure from the cold gas to the background medium, resulting in cold gas properties that are in between those predicted by simulations with inefficient transport and simulations without cosmic rays. We show that cosmic rays can significantly reduce galactic accretion rates and resolve the tension between theoretical models and observational constraints on the properties of cold CGM gas

    X-ray protection, surface chemistry and rheology of ball-milled submicron Gd2O3 aqueous suspension

    Get PDF
    X-ray protective garments are typically comprised of lead-based materials, which are toxic to both people and the environment. Developing alternative lightweight radiation shielding materials is a priority for protecting people working with radiation. Gadolinium, with an electron configuration typical of radiation shielding elements, is proposed as a non-toxic replacement for lead. This study provides new insights into the potential for a gadolinium suspension for replacing lead and proposes an inexpensive and effective preparation method. Submicron gadolinium oxide (Gd2O3) was generated using a cost effective ball milling method involving addition of NaCl. Then, the dispersed-flocculated behaviour of Gd2O3 aqueous slurries was studied via yield stress and zeta potential techniques to stabilise the dispersion. The relationship of the transmission-volume fraction at different kVp from an interventional radiology source was established to investigate radiation attenuation performance of the suspension. At a low volume fraction (0.082), the gadolinium slurry attenuated more than 95% of the X-ray load from a 50⬜100 kVp source. The equivalent weight-thickness at the same attenuation of 95% (5% transmission) of the Gd2O3 suspension was 1.5 g/cm2, which is comparable to that of equivalent commercial lead-based materials (\u3e1 g/cm2). This research is significant for developing a non-lead-based material, Gd2O3 suspension, which offers effective radiation attenuation with weight-thickness minimisation and safe use and disposal
    corecore